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Abstract-Stability and vibration characteristics of two dimensional axially moving plates have
been investigated. The closed fonn solution of the speed at the onset of instability is predicted by
linear plate theory and exact boundary conditions. The speed at the onset of instability is the lowest
speed at which non-trivial equilibrium position exists (static analysis) or the lowest speed at which
the real part of one eigenvalue impends to be non-zero (dynamic analysis). The critical speed is the
speed at which the transport speed of the plate equals the propagation speed of a transverse wave
in the plate. The results show that the critical speed equals the speed at the onset of instability
predicted by static and dynamic analyses. The speed at the onset of instability increases as the ratio
of the length to the width of the plate decreases and as the flexural stiffness of the plate increases.
One dimensional beam theory always overestimates the speed at the onset of instability and string
theory always underestimates that speed. The plate may experience divergent or flutter instability
at supercritical transport speed. A second stable region above the critical speed may exist for plates
with slenderness ratio greater than a critical value determined by the stiffness ratio and Poisson's
ratio. This opens the possibility of stable operation at speeds greater than the critical speed. :r;; 1997
Elsevier Science Ltd.

INTRODUCTION

Axially moving materials are found in industry as band saw blades, magnetic tapes, paper
webs, plastic sheets, films, transmission cables, and the like. Above a critical speed, the
axially moving material experiences divergent or flutter instability. The instability of band
saw blades leads to loss of raw material, low surface quality and unsatisfactory cutting
performance. Excessive vibration of a computer tape degrades the signal and can cause
improper data storage. Flutter of a paper web degrades quality, increases defects, and can
lead to breakage of the web. To ensure that the systems are under stable operation, the
occurrence of instability must be predicted and controlled.

Traveling threadline theory (Archibald and Emsile, 1958; Sack, 1954) can be applied
to predict the instability of the materials with small flexural stiffness. One dimensional beam
theory (Simpson, 1973) is useful when the effects of the boundary conditions at the width
ends on the prediction are negligible.

Gorman (1982) investigated the free vibration of stationary rectangular plates. Lin
and Mote (1995) investigated the equilibrium displacement and stress distribution of a two
dimensional axially moving web under transverse loading. It is followed by a paper (Lin
and Mote, 1996) predicting the wrinkling instability and the corresponding wrinkled shape
of a web with small flexural stiffness. However, the stability and the vibration characteristics
of axially moving plates have not been fully understood.

The purpose of this paper is to investigate the stability and the vibration characteristics
of two dimensional axially moving plates with two simply supported and two free edges,
subjected to uniform in-plane tension in the transport direction. The closed form solution
of the speed at the onset of instability is predicted by linear plate theory and exact boundary
conditions. The axially moving beam and string theories are also considered for comparison.
The instability of the plate is predicted by determining the existence of non-trivial equi­
librium position (static analysis) and the study of an eigenvalue problem (dynamic analysis).
The speed at the onset of instability is the lowest speed at which the non-trivial equilibrium
position exists or the lowest speed at which the real part of one eigenvalue impends to be
non-zero. The critical speed is the speed at which the transport speed of the plate equals
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the propagation speed of a transverse wave in the plate. The results show that the critical
speed equals the speed at the onset of instability predicted by static and dynamic analyses.
The speed at the onset of instability increases as the ratio of the length to the width of the
plate decreases and as the flexural stiffness of the plate increases. One dimensional beam
theory always overestimates the speed at the onset of instability and string theory always
underestimates that speed. The plate may experience divergent or flutter instability at
supercritical transport speed. A second stable region above the critical speed may exist for
plates with slenderness ratio greater than a critical value determined by the stiffness ratio
and Poisson's ratio. This opens the possibility of stable operation at speeds greater than
the critical speed,

EQUATION OF MOTION

The equation governing transverse motion of the two dimensional axially moving
plate, in coordinates (x, y) fixed in space, in free vibration in Fig. I is

(I)

where a comma denotes partial differentiation and V4}i> = ~t',,,,,,, +2}t',i\\!,+ }t',),i"f'" The bound­
ary conditions at the free edges, }' = 0 and}' = B, are

(2)

(3)

and at the simply supported edges, .'? = 0 and .'? = L, are

(4)

(5)

(5) can be simplified as

(5a)

because },(',fl is zero along the simply supported edges. Here, wei,}', t) denotes the transverse
displacement of the plate at C'?,}') and time f; D = Eh3/[12(l- v2

)] ; E is Young's modulus;
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Fig, I. Axially moving plate,
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p is mass per area; v is transport speed; v is Poisson's ratio; h is thickness; T is the
applied longitudinal tension. The material properties are uniform and constant. Let the
dimensionless parameters be
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(7b)

The stiffness ratio, e, is a non-dimensional ratio of the flexural stiffness to the stiffness
derived from the applied longitudinal tension. C is the constant, non-negative speed ratio
of the transport speed to the propagation speed of a transverse wave in a string. The
slenderness ratio ~ is the ratio of the length to the width of the plate. S is introduced to
simplify the presentation of the equation of motion. Substitution of (6) and (7) into (I)
gives the dimensionless equation of motion

1I'."+2Cw,, +(C 2 -1)w o :+eV4 w = 0,

where V4 is the dimensionless biharmonic operator.

(8)

STATIC ANALYSIS

The axially moving plate can be unstable if multiple equilibrium positions exist at any
problem specification. The speed at the onset of instability is the lowest speed at which
multiple equilibrium positions exist.

The equilibrium position in (8) satisfy

(9)

We can conclude that non-trivial equilibrium position does not exist for S < 0 by comparing
eqn (9) with the equation of motion of a stationary plate subjected to in-plane compression
or tension in the longitudinal direction (Timoshenko, 1936). Thus, the necessary condition
for the existence of multiple equilibrium positions of an axially moving plate is

or

S~O

C ~ I.

(lOa)

(lOb)

Non-trivial equilibrium position Wmk (m, k = 1,2, ...) exists when S = Smk. The value
5mb depending on the slenderness ratio ~, can be determined from the transcendental
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equation in the Appendix. There are two sets of non-trivial equilibrium positions:
(i) For 0 ~ S ~ (mn)2

Wml = sin(mnx) {[AmI sinh(iXmy)+Aml cosh(amy)]

+ [AmI sinh(fJmy)+Aml cosh(fJmY)]}· (lla)

(ii) For S > (mn)2

Wm" = sin(mnx) {[Am" sinh(amy) + Am" cosh(amy)] + [Amn sin(YmY) + Am" cos(/mY)]} ,

(II b)

where

(12a)

(l2b)

(l2c)

Amb Amk, Amb and Amk are constants; and n = 2,3, .... Let S* be the smallest Smk' Thus,
the speed at the onset of instability, C*, of an axially moving plate is

C* = JI +8S*. (13)

DYNAMIC ANALYSIS

Wickert's approach (1990) using beam theory is applied to derive the equation of
motion for plate in matrix form. Define the differential operators

Equation (8) becomes

Mwtt+Gw.,+Kw = O.

Let

W(x,Y,t) = u(x,y)e;',

where A is a complex number. Substitution of (16) into (15) gives

In terms of the vector and matrix operators

the equation of motion (17) becomes

(14)

(15)

(16)

(17)

(18)
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Fig. 2. The speed em' at which non-trivial equilibrium position Wmk exists, with E = 0.1 and v = 0.3.

AAfi +Bfi = O. (19)

Matrix differential operator A is symmetric and B is skew-symmetric with the inner product
of two vectors u, and u2 defined as

(20)

where the overbar denotes complex conjugation. The eigenvalue problem, formed by (19)
plus appropriate boundary conditions, is solved using the Galerkin method with comparison
functions Wmk in (II). The speed at the onset of instability is the speed at which the smallest
natural frequency vanishes and the real part of the corresponding eigenvalue impends to
be non-zero.

RESULTS AND DISCUSSION

The speed at the onset of instability, C*, of an axially moving plate is the lowest
transport speed at which multiple equilibrium positions exist (static analysis) or the lowest
speed at which the real part of one eigenvalue in (16) impends to be non-zero (dynamic
analysis). Let (J and w denote the real and imaginary parts of the eigenvalue A in (16),
respectively. Non-zero (J indicates the instability of the system and w is the circular natural
frequency of the axially moving plate. The plate can experience divergent instability (one
mode with non-zero (J and zero w) or flutter instability (one mode with non-zero (J and
non-zero w) when it transports at a speed greater than the speed at the onset of instability.

Let Cmk (m, k = 1,2, ...) be the transport speed at which non-trivial equilibrium pos­
ition Wmk in (lla) and (II b) exists. Figure 2 shows Cmk with e = 0.1 and v = 0.3. WI I is the
dominant instability mode because CII < Cpq for (p, q) of (I, I). Therefore, the speed at the
onset of instability C* is the speed at which W'I exists,
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C* = CII' (21 )

Cml decreases and c"m (n = 2,3, ...) increases as the slenderness ratio ~ increases. The
speed at the onset of instability, C*, decreases as the slenderness ratio increases.

For plates with small slenderness ratio (~ < 0.2), many different Wmk may occur in a
small range of transport speed. For instance, the speed range 1.4 < C < 1.45 with I: = 0.1
and v = 0.3. In this case, the occurrence of jumps between modes may be frequently
observed.

The speed at the onset of instability of an axially moving string is

and that of an axially moving beam is

C~= I (22)

(23)

Figure 3 shows the speed at the onset of instability, C* in (13), for plates with different
slenderness ratios ~ = 0.5, I and 10. C* increases as the stiffness ratio I: increases. When
I: = 0, C* in (13) predicted by plate theory is equivalent to C~ in (22) predicted by string
theory. For an infinitely wide plate (~ --+ 0). the effects of the free end boundary conditions
on C* are negligible and C* predicted by the plate theory is equivalent to ct predicted by
the beam theory. For a plate with finite width, one dimensional beam theory always
overestimates C* and string theory always underestimates C*. The error of the speed at the
onset of instability predicted by the beam theory is significant for materials with large
stiffness ratio and large slenderness ratio. For instance, with I: = 1.0 and ~ = 10, the one
dimensional beam theory overestimates C* by 4.30%. But, with I: = 0.1 and ~ = 0.5, the
beam theory overestimates C* by only 0.67%.

The pertinent specifications of one paper product are I: = 1.58 X 10-4
, and ~ = 2

(E = 5 x 109 N/m2
, T = 55 N/m, v = 0.3, L = 1.194 m, B = 0.597 m. h = 0.3 mm). In this

case, the differences between C* predicted by string, beam, and plate theories are negligible
because the stiffness ratio is small. A high speed band saw can have the following speci­
fications: I: = 1.127. and ~ = 4 (E = 2 x 101

' N/m2
, T = 4 X 104 N/m, v = 0.3, L = 1.0 m.
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Fig. 3. The speed at the onset of instability. C*. with different slenderness ratios ¢ = 0.5. I. and 10.
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B = 0.25 m, h = 0.0135 m). In this case, the beam theory overestimates C* by 4.1 %. c*
predicted by the plate theory is useful for high stiffness, wide band saw blades.

Figure 4 shows the non-trivial equilibrium positions of the axially moving plate with
~ = 1.0, and v = 0.3. The deflections of WII in Fig. 4(a) and W21 in Fig. 4(b) are described
by a sine function in the longitudinal direction and a function including two sets of
hyperbolic sines and hyperbolic cosines in the width direction (egn (\ la)). The variations
of the deflections of W l1 and 11'21 in the width direction are negligible except near the free
edges. The deflections of Wl2 in Fig. 4(c) and Wn in Fig. 4(d) are described by a sine function
in the longitudinal direction and a function including one set of sine, cosine, hyperbolic
sine, and hyperbolic cosine in the width direction (eqn (11 b)). The slopes of the deflections

(a)

(b)

w

1

Fig. 4. The non-trivial equilibrium positions of the axially moving plate with ( = 1.0 and \' = 0.3.
(a) W II , (b) '1'", (c) w". (d) It·". (Continued overleaf)
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Fig. 4-Continued.

of WI2 and W 22 in the width direction are constant except near the free edges. The modes
(Fig. 4(a)-(d» are either symmetric or anti-symmetric to the midpoint of the plate.

Substitution of (16) into (8) gives

(24)

The Galerkin solution gives an accurate approximation of the first six eigenvalues with
only nine comparison functions applied. U = Wmk satisfies (24) with C = Cmk when the
corresponding eigenvalue Amk vanishes. Therefore, the speed Cmk , at which non-trivial
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equilibrium position Wmk exists (static analysis), is equivalent to that at which Amk vanishes
(dynamic analysis). CII is the speed at which All vanishes (the smallest circular natural
frequency WII vanishes and 0"11 impends to be non-zero). Both static and dynamic analyses
predict the same speed at the onset of instability.

The eigenvalues versus axial transport speed C with I: = 0.1 and ~ = 5.0 are shown in
Fig. 5. 0" = 0 and the plate is stable for C < C,. The natural frequencies decrease as C
increases for C < CII' 0" impends to be non-zero, the smallest natural frequency vanishes,
and the first mode divergent instability occurs at the speed CII' There is a second stable
region (C21 < C < Cf) where 0" = O. The plate experiences divergent instability for
CII < C < C2\' Repeated complex roots of the eigenvalues exist at the speed, Ct. The plate
may experience divergent or flutter instability for C > Cf'

The real parts of the eigenvalues versus axial transport speed C with I: = 0.1 and
~ = 1.0 are shown in Fig. 6. There is no second stable region above CII' From Fig. 2, for
plates with ~ < 1.3, Wl2 exists at a lower transport speed than W 2l does, because C l2 is
smaller than C21 . Therefore, the second stable region does not exist for plate with ~ < 1.3.
For plates with other I: and v, a second stable region above the critical speed exists when
~ > ~2(1:, v). Here, ~2 is the slenderness ratio with which CI2 = C21 and can be determined
from (11), (12), (A.l), and (A.6). Ulsoy and Mote (1982) used plate models with approxi­
mate boundary conditions (W'T' = W,ry = 0 at free edges) and led to the decoupling of the
comparison functions into simple-simple and free-free beam eigenfunctions. Ulsoy's model

(a) 8

6

0- 4

2

0

0 2 3
C

(b) 25

20

ro 15

10

5

00 1 2 3
C

Fig. 5. The eigenvalue Ie = 0-+ iw vs axial transport speed C with f. = 0.1 and ~ = 5.0.
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Fig. 6. The real part of the eigenvalues vs axial transport speed C with F. = 0.1 and i; = 1.0

cannot characterize the importance of the slenderness ratio and the free edge boundary
conditions on the prediction of the second stable region.

The critical speed, C." is the speed at which the plate transport speed equals the
propagation speed of a transverse wave, Cwp, in the plate (Ces = Cwp ). The wave propagation
speed in a stationary plate is equivalent to that in a plate transporting along its length at
constant speed. To determine the wave propagation speed in a stationary plate, let

w = H(y) sin(nx-wt)+H(y) sin(nx+wt)

(25)

GI represents the forward traveling wave and G2 represents the backward traveling wave
with the shape of the fundamental non-trivial equilibrium position. H(y) is the function in
the braces of eqn (11 a) with m = 1. Substitution of (25) into (8) and letting C = 0 gives

(26a)

W I1 in egn (11 a) satisfies (9) plus boundary conditions when the plate transports at the
speed C*. Substitution of Wil into (9) and letting C = C* gives

(26b)

Comparison of (26a) and (26b) gives the wave propagation speed, Cup,

w
Cup =-= C*.

n
(27)

Thus.

Ces = C*, (28)
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thc critical speed of the axially moving plate is equivalent to the speed at the onset of
instability determined from the static and dynamic analyses.

CONCLUSION

Stability and vibration characteristics of two dimensional axially moving plates have
been investigated. The results of this analysis are summarized as the following:

(1) The seed at the onset of instability predicted by the linear plate theory is C* =
1+ eS* (eqn (13) and Fig. 3). String theory always underestimates the speed at the

onset of instability. Beam theory predicts an upper bound of the speed at the onset of
instability for plates. The difference between c* and C: in (23) is negligible when the
stiffness ratio and the slenderness ratio of the material are small. But, the error of the
speed at the onset of instability predicted by the beam theory is significant for the
material with large stiffness ratio and large slenderness ratio.

(2) The speed at the onset of instability of an axially moving plate increases as the slen­
derness ratio decreases and the stiffness ratio increases. The smallest natural frequency
decreases as the slenderness ratio increases for the plate transported at a speed less than
the speed at the onset of instability.

(3) Both static and dynamic analyses predict the same speed at the onset of instability, C*,
for an axially moving plate. C* predicted from static analysis is the speed at which the
non-trivial equilibrium position W II exists. C* predicted from the dynamic analysis is
the speed at which the smallest circular natural frequency W I1 (imaginary part of ;'11)
vanishes and (TIl (real part of }'II) impends to be non-zero.

(4) The speed at which the plate transport speed equals the propagation speed of a
transverse wave in the plate is defined as the critical speed. The critical speed equals
the speed at the onset of instability predicted by static and dynamic analyses (eqn (28)).

(5) For plates with different e and v, a second stable region above the critical speed exists
when ( > ~2(e, v). Here, (2 is the slenderness ratio with which CI2 = C21 and can be
determined from (11), (12), (A.I) and (A.6). All the real parts of the eigenvalues
vanish in that region. This opens the possibility of stable operation at speeds higher
than the critical speed.

(6) Closed form solutions of the non-trivial equilibrium positions are determined in this
analysis. The deflection of the fundamental mode W I1 is described by a sine function in
the axial direction and a function including two sets of hyperbolic sines and hyperbolic
cosines in the width direction. The variations of the deflections of WI I in the width
direction are negligible except near the free edges. WII is symmetric to the midpoint of
the plate.
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APPENDIX

The value 5"" at which 11'"" in (lla) exists can be determined from

where

Q2 = f3~-(2-v)f3",m'n'

Q4 = f3;, - vm2n'.

The value 5"" at which 11'"" in (II b) exists can be determined from

(A,2)

(A,3)

(AA)

(A,S)

where

Q, = y~,+(2-v)/,,,m'n' (A.7)

(A.S)


